Confinement effects on glass transition temperature, transition breadth, and linear expansivity: an ultraslow X-ray reflectivity study on supported ultrathin polystyrene films.

نویسندگان

  • Chunming Yang
  • Rena Onitsuka
  • Isao Takahashi
چکیده

X-ray reflectivity measurements of the glass transition in thin polystyrene films supported on Si substrates were performed at slow cooling rates ranging from 0.62 to 0.01 (°)C/min. At a cooling rate of 0.14 (°)C/min, a depression in the glass transition temperature Tg was clearly observed with decreasing thickness. However, at a cooling rate of 0.62 (°)C/min, only a slight decrease in Tg for a 12-nm-thick film was observed, while at an ultraslow cooling rate of 0.01 °C/min, a significant reduction in the Tg of ultrathin films (12 and 6 nm) was observed. As the thickness decreased, a broadening in the width of the glass transition, w, was found at higher cooling rates (0.62 °C/min and 0.14 °C/min), while narrowing of w was observed at ultraslow cooling rates of 0.01 °C/min and 0.04 °C/min. A narrow distribution of relaxation time in the ultrathin films indicates that most segments are able to relax under the ultraslow cooling process, thus showing an inherent reduction in the Tg of the confined thin polymer films.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal expansion behavior of ultrathin polymer films supported on silicon substrate.

The thermal expansion behavior of polystyrene (PS) thin films was investigated using x-ray reflectivity, focusing on ultrathin films below 10 nm. It was found that the glass transition temperature T(g) decreases with thickness as reported by many researchers while it is almost independent of thickness and constant at 354 K for films below approximately 10 nm. The thickness dependence of T(g) wa...

متن کامل

Distributions of glass-transition temperature and thermal expansivity in multilayered polystyrene thin films studied by neutron reflectivity.

We performed neutron reflectivity measurements on multilayered polymer thin films consisting of alternatively stacked deuterated polystyrene (d-PS) and hydrogenated polystyrene (h-PS) layers ∼200 Å thick as a function of temperature covering the glass-transition temperature T(g), and we found a wide distribution of T(g) as well as a distribution of the thermal expansivity α within the thin film...

متن کامل

Glass transition in ultrathin polymer films: a thermal expansion study.

The glass transition process gets affected in ultrathin films having thickness comparable to the size of the molecules. We observe systematic broadening of the glass transition temperature (T(g)) as the thickness of an ultrathin polymer film reduces below the radius of gyration but the change in the average T(g) was found to be very small. The existence of reversible negative and positive therm...

متن کامل

Effect of nanoscale confinement on glass transition of polystyrene domains from self-assembly of block copolymers.

The understanding of size-dependent properties is key to the implementation of nanotechnology. One controversial and unresolved topic is the influence of characteristic size on the glass transition temperature (T(g)) for ultrathin films and other nanoscale geometries. We show that T(g) does depend on size for polystyrene spherical domains with diameters from 20 to 70 nm which are formed from ph...

متن کامل

Annealing temperature effect on nanostructure and phase transition of Copper Oxide thin films

This paper addresses the annealing temperature effect on nanostructure and phase transition of copper oxide thin films, deposited by PVD method on glass substrate (at 110 nm thickness) and post annealed at different temperatures (200-400°C) with a flow of 1 cm3s-1 Oxygen. The X-ray diffraction (XRD) was employed for crystallographic and phase analyses, while atomic force m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The European physical journal. E, Soft matter

دوره 36 6  شماره 

صفحات  -

تاریخ انتشار 2013